COMPETITION GRADE LONG THROW DEEP BASS SUBWOOFER

UPC: 5060905111916

INSTALLATION POINTS

Failure to observe will invalidate warranty.

- Do not run this subwoofer infinite baffle.
- Ensure that enough clean power is available.
 Do not rely on amplifier published information to set gain controls.
- Perform break in for several hours at medium level before use

DETAILED TECHNICAL DATA

Power Handling (Per Driver):	3500 WRMS (@0%Thd)
Nominal Impedance:	1+1 ohm
DC Impedance :	0.9+0.9 ohm
Voice Coil:	88.5 mm
Voice Coil Layers :	4 Layers Round Wire
Magnet:	230 mm x 60 mm
Magnet Type:	Y35 528 Oz Ferrite

TEAM TIPS

This is an extreme subwoofer, designed for use to create extreme sound. Time spent building a solid, high quality enclosure will be rewarded with performance. Glue and screw all joint lines and seal with silicone afterwards.

Pay attention to fixing the woofer to the enclosure. We recommend T nuts or captive nuts. We do not recommend the use of self tapping screws.

• Ensure to use a very thick baffle plate for the installation.

Optimal Frequency Response: 25>90Hz

BOX COMPATIBILITY

Ported

110Litres

28"2>37"2

28>50Hz

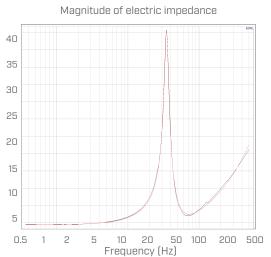
Recommended Box Type:

Example Box Size:

Example Port Cross

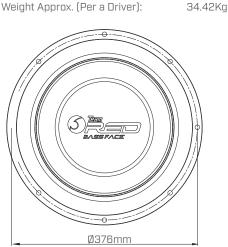
Sectional Area (CSA):

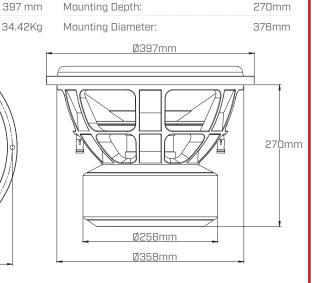
Recommended Tuning


Frequency:

- Remember, the function of a subwoofer is to move air. If you can feel vibration in the structure that is effectively wasted energy. The best systems minimise wasted energy and move the most air.
- Remember, more cone area gives more SPL. There is a limit to what a given amount of cone area can produce.

TS PARAMETERS


Name	Value	Unit	Note	Name	Value	Unit	Note
RE	0.44	OHM	Electrical voice coil resistance at DC	BL	9.615	N/A	Force factor BL product
KRM	0.0010	OHM	Wright inductance model	LAMBDA	0.000		Suspension creep factor
ERM	0.90		Wright inductance model	QΤΡ	0.558		Total Q factor considering all losses
KXM	0.0073	OHM	Wright inductance model	QMS	5.97		Mechanical Q factor of driver in free air
EXM	0.70		Wright inductance model				considering RMS only
CMES	4946.07	UF	Electrical capacitance representing moving mass		0.478		Electrical Q factor of driver in free air considering RE only
LCES	4.19	МН	Electrical inductance representing driver	QTS	0.443		Total Q factor considering RE and RMS only
LULU	4.10		compliance	VAS	45.8342		Equivalent air volume of suspension
RES	5.49	OHM	Resistance due to mechanical losses	МQ	0.391	%	Ref. efficiency (2 PI radiation using RE)
FS	34.9	ΗZ	Driver resonance frequency	LM	88.12	DB	Sound pressure level
MMS	458.896	G	Mechanical mass of driver diaphragm				(SPL at 1M for 1W @ RE)
			assembly including air load and coil	LMOM	88.68	DB	Nom. sensitivity (SPL at 1M for 1W @ ZN)
MMD	431.141	G	Mechanical mass of voice coil and diaphragm without air load	RMSE Z	4.76	%	Root mean square fitting error of driver impedance Z(F)
RMS	16.848	KG/S	Mechanical resistance of total driver losses	RMSE HX	4.24	%	Root mean square fitting error of
CMS	MS 0.045	45 MM/N	Mechanical compliance of driver				transfer function HX(F)
			suspension SD	SD	844.96	CM2	Diaphragm area
KMS	22.04	N/MM	Mechanical stiffness of driver suspension	XMAX	23	mm	Total linear movement


FREQUENCY VS IMPEDANCE

TECHNICAL DRAWING

Total Diameter:

